Thursday, April 25, 2013

EARTH DAY 22.4.2013. 


Earth Day 1970 capitalized on the emerging consciousness, channeling the energy of the anti-war protest movement and putting environmental concerns front and center. The idea came to Earth Day founder Gaylord Nelson, then a U.S. Senator from Wisconsin, after witnessing the ravages of the 1969 massive oil spill in Santa Barbara, California. Inspired by the student anti-war movement, he realized that if he could infuse that energy with an emerging public consciousness about air and water pollution, it would force environmental protection onto the national political agenda. Senator Nelson announced the idea for a “national teach-in on the environment” to the national media; persuaded Pete McCloskey, a conservation-minded Republican Congressman, to serve as his co-chair; and recruited Denis Hayes as national coordinator. Hayes built a national staff of 85 to promote events across the land. As a result, on the 22nd of April, 20 million Americans took to the streets, parks, and auditoriums to demonstrate for a healthy, sustainable environment in massive coast-to-coast rallies. Thousands of colleges and universities organized protests against the deterioration of the environment. Groups that had been fighting against oil spills, polluting factories and power plants, raw sewage, toxic dumps, pesticides, freeways, the loss of wilderness, and the extinction of wildlife suddenly realized they shared common values. 

Earth Day 1970 achieved a rare political alignment, enlisting support from Republicans and Democrats, rich and poor, city slickers and farmers, tycoons and labor leaders. The first Earth Day led to the creation of the United States Environmental Protection Agency and the passage of the Clean Air, Clean Water, and Endangered Species Acts. "It was a gamble," Gaylord recalled, "but it worked." 

Green Pledge
As 1990 approached, a group of environmental leaders asked Denis Hayes to organize another big campaign. This time, Earth Day went global, mobilizing 200 million people in 141 countries and lifting environmental issues onto the world stage. Earth Day 1990 gave a huge boost to recycling efforts worldwide and helped pave the way for the 1992 United Nations Earth Summit in Rio de Janeiro. It also prompted President Bill Clinton to award Senator Nelson the Presidential Medal of Freedom (1995) -- the highest honor given to civilians in the United States -- for his role as Earth Day founder.THE FACE OF THE EARTH........As the 43nd Anniversary of “Earth Day2013” is being celebrated today, More than one billion people around the globe will participate in Earth Day 2013 and help Mobilize Earth. People of all nationalities and backgrounds will voice their appreciation for the planet and demand its protection. Over the past century, the world has fallen into a pattern of unsustainable economic growth. Accelerated consumption of fossil fuels and deforestation are the most visible examples of how, in the effort to support our lifestyles, we are exhausting the planet's natural resources and aggravating climate change, which in turn threatens life-sustaining ecosystems and the economy.A Green Economy not only protects ourselves and our planet, but has the potential of generating millions of jobs as we develop and install new technologies, rebuild and retrofit buildings, and devise new processes and modes of production.

Sunday, March 31, 2013

Stanford researchers find electrical current stemming from plants

Stanford engineers have generated electrical current by tapping into the electron activity in individual algae cells. Photosynthesis excites electrons, which can then be turned into an electrical current using a specially designed gold electrode. This study could be the first step toward carbon-free electricity directly from plants.
In an electrifying first, Stanford scientists have plugged into algae cells and harnessed a tiny electrical current. They found it at the very source of energy production – photosynthesis, a plant's method of converting sunlight to chemical energy. It may be a first step toward generating high-efficiency bioelectricity that doesn't give off carbon dioxide as a byproduct, the researchers say.
"We believe we are the first to extract electrons out of living plant cells," said WonHyoung Ryu, the lead author of the paper published in the March issue of Nano Letters. Ryu conducted the experiments while he was a research associate for mechanical engineering Professor Fritz Prinz.
The Stanford research team developed a unique, ultra-sharp nanoelectrode made of gold, specially designed for probing inside cells. They gently pushed it through the algal cell membranes, which sealed around it, and the cell stayed alive. From the photosynthesizing cells, the electrode collected electrons that had been energized by light and the researchers generated a tiny electrical current.
Early research stage
"We're still in the scientific stages of the research," said Ryu. "We were dealing with single cells to prove we can harvest the electrons."
Plants use photosynthesis to convert light energy to chemical energy, which is stored in the bonds of sugars they use for food. The process takes place in chloroplasts, the cellular powerhouses that make sugars and give leaves and algae their green color. In the chloroplasts, water is split into oxygen, protons and electrons. Sunlight penetrates the chloroplast and zaps the electrons to a high energy level, and a protein promptly grabs them. The electrons are passed down a series of proteins, which successively capture more and more of the electrons' energy to synthesize sugars until all the electrons' energy is spent.
In this experiment, the researchers intercepted the electrons just after they had been excited by light and were at their highest energy levels. They placed the gold electrodes in the chloroplasts of algae cells and siphoned off the electrons to generate the tiny electrical current.
The result, the researchers say, is electricity production that doesn't release carbon into the atmosphere. The only byproducts of photosynthesis are protons and oxygen.
"This is potentially one of the cleanest energy sources for energy generation," Ryu said. "But the question is, is it economically feasible?"
Minuscule amount of electricity
Ryu said they were able to draw from each cell just one picoampere, an amount of electricity so tiny that they would need a trillion cells photosynthesizing for one hour just to equal the amount of energy stored in a AA battery. In addition, the cells die after an hour. Ryu said tiny leaks in the membrane around the electrode could be killing the cells, or they may be dying because they're losing out on energy they would normally use for their own life processes. One of the next steps would be to tweak the design of the electrode to extend the life of the cell, Ryu said.
Harvesting electrons this way would be more efficient than burning biofuels, as most plants that are burned for fuel ultimately store only about 3 to 6 percent of available solar energy, Ryu said. His process bypasses the need for combustion, which harnesses only a portion of a plant's stored energy. Electron harvesting in this study was about 20 percent efficient. Ryu said it could theoretically reach 100 percent efficiency one day. (Photovoltaic solar cells are currently about 20 to 40 percent efficient.)
Possible next steps would be to use a plant with larger chloroplasts for a larger collecting area, and a bigger electrode that could capture more electrons. With a longer-lived plant and better collecting ability, they could scale up the process, Ryu said. Ryu is now a professor at Yonsei University in Seoul, South Korea.
Funding for this research came from the Global Climate and Energy Project at Stanford University and the Yonsei University Research Fund of 2009.
Other authors of the paper are Prinz, the senior author; Seoung-Jai Bai, Tibor Fabian, Rainer J. Fasching, Zubin Huang and Joong Sun Park, all researchers in the Rapid Prototyping Laboratory for Energy and Biology at Stanford University; and Jeffrey Moseley and Arthur Grossman, researchers in the Department of Plant Biology at the Carnegie Institution and the Department of Biology at Stanford.

Link Stanford

Sunday, May 13, 2012

Himalayan forests at greater risk from climate change

Climate change will be an additional stress on Indian forests, especially in upper Himalayan stretches, which are already subjected to multiple challenges including over-extraction, livestock grazing and human impact, a government report said here on Wednesday. 

India's second National Communication to the UN Framework Convention on Climate Change, released by environment minister
Jayanthi Natarajan said that the assessment of climate impacts showed that at the nationallevel, 45 per cent of forested grids are likely to undergo changes. In the report, a digital forest map of the country was used to determine spatial location of all the forested areas. 

This map was based on a high-resolution mapping, wherein the entire area of India was divided into over 165,000 grids. Out of these, 35,899 grids were marked as forested grids - along with the forest density and forest types. Vulnerability assessment showed that sensitive forested grids are
spread across India. "However, their concentration is higher in the upper Himalayan stretches, parts of Central India, northern Western Ghats and Eastern Ghats," said the MoEF report towards fulfillment of reporting obligation under the convention.